
The Intelligence
Advantage

How AI-Driven Development is

Reshaping Software and Strategy

AI

AI is reshaping software development at breakneck speed. This white paper explores how
programming practices and business outcomes are being transformed as a result.

What started as simple code completion has evolved into AI-driven development - where
developers act more as solution architects than traditional coders. Early adopters are seeing
dramatic productivity gains, with experienced developers who embrace AI achieving the best
results.

Contrary to fears about job displacement, while
making coding more accessible to others. Organizations face both technical and cultural
challenges, but those successfully integrating AI programming tools gain significant competitive
advantages through faster delivery and reduced technical debt.

While AI tools may increase some development costs, the value delivered per dollar rises
substantially. Meanwhile, AI is making programming available beyond professional developers,
enabling personalized software creation that expands technology literacy across society.

This paper provides a practical framework for understanding these changes and offers guidance
on effectively harnessing AI in your development process. To be transparent, 100% of the content
was prepared by a human, refined and edited by Perplexity AI and Claude AI, as well as peer
review. All robotic imagery was generated in Midjourney AI.

AI is elevating the role of skilled developers

Executive Summary

AI

Mikołaj (Miki) Sitek

AI Ambassador

Just a few years ago, developers dismissed AI-generated code as
primitive and error-prone. Fast forward to today, and tools like GitHub
Copilot, Cursor or Cline backed by AI models like Claude or GPT-4 have
become indispensable programming assistants.

We've now entered the era of “vibe coding” - a term coined by former
OpenAI researcher Andrej Karpathy. In this paradigm, programmers
spend less time writing code and more time directing AI systems that
generate, test, and refine code based on natural language instructions.

This isn't just hype - it's the clear trajectory we're on.

Note: Throughout this document, we will use the term "AI-driven development" to maintain professional
terminology, though you may encounter "vibe coding" in industry discussions of this approach. Pure Vibe Coding
entails not even checking the produced code, which is not recommended.

Our goal is to provide a clear-eyed view of this transformation with
practical insights you can apply today. This paper examines what this
shift means for developers, businesses, and organizations. We cover:

 How AI is changing day-to-day development wor

 The business value and return on investmen

 How developer roles and skills are evolvin

 Quality assurance and security consideration

 Organizational adaptation challenge

 What comes next and how to prepare

Introduction

About this whitepaper

AI

"...in twelve months, we
may be in a world where
AI is writing essentially
all of the code”

~Dario Amodei, Anthropic's CEO

02

16

09

23

04

18

10

05

19

13

07

22

14

Introduction - General overview

Business value and transformation

The future software developer

Sources

TLDR - Key Takeaways

Emerging trends and the path forward

Code quality and security risks

Software Development shift

AI as a replacement for developers?

Cultural resistance and aversion to change

Knowledge more valuable than quantity

Conclusions

Case Study - AI Refactoring brings 63% performance gains

Table of Contents

AI

The evolution of AI in programming has started. AI disrupted the
market, changes need to be made. On the right, software
development evolution over the decades.

We are here. Heading towards AI management, replacing

manual work with business driven problem solving.

2025

P
R

O
D

U
C

T
IV

IT
Y

TLDR - Key Takeways The developer that
manually codes

The solution architect
that orchestrates AI

AI

Programming has always evolved with new tools and abstractions.

We moved from assembly language to high-level languages, from text
editors to IDEs, and from manual memory management to garbage
collection. Each step made developers more productive by handling
low-level details automatically.

[2018-2021]

Early AI coding tools like TabNine and the first

version of GitHub Copilot offered smart

autocomplete features. These tools were

impressive but limited to suggesting a few

lines at a time, usually based on what you had

already typed.

[2021-2023]

As large language models improved, tools

began generating entire functions, classes,

and even small programs based on comments

or natural language descriptions. This marked

the transition from AI as a typing assistant to

AI as a coding partner.

[2023-]

The latest evolution is where developers

become more like solution architects directing

AI to build entire features or applications. The

developer provides the vision, requirements,

and quality control while AI handles the

implementation.

AI represents the next major step in this evolution. But unlike
previous advances that simply automated small tasks, AI is capable
of understanding context, generating complete solutions,

and learning from feedback.

The software development landscape has witnessed several shifts
over decades:

The Evolution of Programming

in the AI Era

Wave 1

Code Completion

Wave 3

AI Driven Development

Wave 2

Code Generation

AI

Developers found the first generations of AI code as unreliable,
incomplete and not particularly helpful.

Today, while
focusing on higher-level direction, quality assessment, and strategic
decision-making.

This shift is controversial.

Many experienced developers argue that AI-assisted coding

"is no longer programming," meant as criticism. But this perspective
misses a crucial point - eliminating routine tasks is a positive thing.

The less creative aspects of development (documentation, testing,
refactoring, building CRUD operations, etc.) can now be delegated,
freeing developers to focus on innovative problem-solving and
architectural design.

a skilled developer can effectively delegate tasks to AI

The AI-Driven

Development Approach

AI

"AI assisted coding is

no longer programming”

~One of our FullStack Developers @ Amsterdam Standard

In a controlled experiment we conducted, a senior frontend
developer with no prior Laravel experience was tasked with building
a complete backend API from scratch using only AI assistance.
Despite having no familiarity with PHP or Laravel-specific patterns,
the developer successfully

 Set up a Laravel application environmen

 Configured database connections and migration

 Implemented authentication and authorizatio

 Created RESTful endpoints that retrieved data  
from a relational databas

 Deployed the solution to a test environment

A Laravel expert later evaluated the solution and found it functionally
sound, though noted several areas where deeper domain knowledge
would have improved the implementation.

Knowledge will matter

Our simple experiment

A common misconception is that AI makes deep technical
knowledge obsolete. The opposite is true.

Our own research and field experience consistently show that the
more experienced the developer, the better results they achieve
with AI. As one senior architect observed,

A developer no longer needs to know every detail of a
technology or framework, remember syntax or rules, but must
understand core concepts and terminology.

"AI excels at execution but struggles with novel
solution design; humans bring the creative
problem-solving that AI lacks."

This experiment demonstrates that conceptual understanding
combined with AI assistance can bridge significant knowledge gaps.

The frontend developer reported that

 and

that "understanding basic backend concepts like migrations and MVC
made the difference between success and failure." This suggests that
while AI can compensate for gaps in specific technical knowledge,
fundamental architectural understanding remains essential.

"knowing the right terminology to use would have been helpful"

AI

Knowing the right
fundamentals is key

Software engineers that focus on understanding the core fundamentals will significantly

benefit from AI assistance. Knowledge based on nuances of programming languages will

lose in value.

This shift will likely reduce the diversity of frameworks in use. Popular, well-documented

frameworks that AI can easily work with will increase adoption, while niche or complex

frameworks shall fade. This could be a consolidation point, standardising programming

patterns, making it easier for AI to perform reliably.

Unlocking

new perspectives

The AI-powered development workflow differs dramatically
from traditional approaches. A future developer will engage in:

This workflow shifts focus
and evaluating solutions critically. Test Driven Development can
also play a critical role in AI assisted development.

A developer works with AI until all test cases pass before
implementing a new feature.

from writing code to defining problems

Developers spend more time clearly articulating requirements

and desired outcomes. Essentially going over the architecture

in their heads - rubber duck method.

Developers prompt AI to generate code that

implements the design.

Humans mostly review output, request changes, explain

issues or bugs, and can even have AI test functionality.

Developers ensure AI-generated code works within

the larger codebase and adhere to safety regulation.

High-level design decisions remain human-driven. Humans excel

at placing the dots, AI fills in the blanks, connecting them.

The New Developer

Problem Definition

#1

AI Direction

#3

Review and Refinement

#4

Integration

#5

Solution Architecture

#2

AI

Will code quality even matter?
Engage in this thought experiment:

AI

Many worry about the quality of AI-generated code. But what defines
"good quality code"? Code that's readable, efficient, and maintainable?

Ironically, in many organizations, resistance to AI-generated code comes
from teams already struggling with technical debt and quality issues in
their human-written codebases.

We ourselves have witnessed hundreds of companies with aging legacy
code and tech debt. This suggests that human-centered development
processes have their own significant quality challenges.

AI-driven development, when properly implemented with appropriate
human oversight, offers a potential path out of technical debt.

If all code is created, reviewed and maintained by AI, does

it matter what’s under the hood?

At the end of the day, the app runs smooth, fulfils business
goals, does so optimally and without security threats.

GPS is an analogous example. The technology has
evolved to near perfection over time. We trust the
algorithms will guide us to our destination.

The underlying route calculations remain invisible
to us, and we've abandoned the practice of
verification through paper maps.

An important aspect often overlooked in discussions about

AI-driven development is security. AI systems trained on public
code repositories may inadvertently reproduce vulnerable
patterns or outdated security practices.

Organizations must implement

 Automated security scanning for all code (eg. Sentry, Snyk

 Clear security requirements in AI prompts and specification

 Regular security training for developers to recognize
vulnerable pattern

 Comprehensive security testing before deployment

When properly managed, AI can actually enhance security

by consistently implementing current best practices and
identifying potential vulnerabilities that human developers

might miss.

Security Considerations
for AI-Generated Code

AI

Organizations should be cautious about strategies that rely
heavily on junior developers paired with AI tools as

a cost-saving measure.

While AI can bridge some knowledge gaps,

, security
vulnerabilities, or performance issues.

We have already observed (internally, in our own projects)

a few situations where rushed and uncheck work of a less
experience programmer, left the senior code reviewer
scratching his head in dumbfound confusion. Witnessing
unfinished and unused code being pushed to review.

The most effective approach pairs experienced architects and
senior developers with AI tools, allowing junior developers to
learn under proper guidance while still benefiting from AI
productivity gains.

it creates a
dangerous scenario where neither the junior developer nor the
AI may recognize significant architectural flaws

The Junior

Developer Risk

The invisible tax your company pays daily. Have you calculated
its burden on your business yet? One of the most significant

long-term business benefits of AI-assisted development is the
potential reduction in technical debt. AI systems can

 Apply consistent patterns across codebase

 Comprehensively document code and design decision

 Generate thorough test coverag

 Refactor legacy code to modern standard

 Discovering and limiting duplicate code

AI can help organizations modernize technical infrastructure
without the large costs traditionally associated with major
refactoring efforts. Read more in our AI refactor case study!

Reducing Technical Debt

The Knowledge
Retention Challenge

AI

When developers write code manually, they benefit from the
 - It's a psychological phenomenon

where actively making or creating information (like writing it down)
leads to better memory retention compared to passively consuming
it (like just reading).

One effective approach is using AI to generate changelog summaries
after each completed task.

These summaries document what files changed, how they impact the
system, and provide a reference for developers. This practice helps
trace when issues were introduced and maintains developer
awareness, increasing memory retention. Also for the AI.

An emerging pattern is for AI to track which tasks have been
finished. This also helps with retaining AI context.

generation effect

Today's AI systems face

notable constraints: finite context windows

and stronger performance with established
technologies & frameworks.

However, these barriers are temporary—as
infrastructure evolves, today's limitations will
become tomorrow's obsolete memories.

The transition to AI-assisted development faces significant cultural
challenges. Many experienced developers resist these changes for
various reasons

 Concerns about skill relevance and job securit

 Professional identity tied to manual coding expertis

 Skepticism about AI's ability to match (or exceed) human-quality cod

 Preference for familiar workflows and practices

Organizations that navigate this cultural transition effectively gain
substantial competitive advantages over those that resist change.
Successful organizations address these concerns through

 Transparent communication about how roles will evolv

 Investment in reskilling and transition suppor

 Gradual implementation with clear demonstration of benefit

 Recognition and reward for effective AI utilization

Cultural Resistance and Adaptation

AI

The developer

Evolving Team Structures

The company

Smaller, more experienced teams augmented

by AI capabilities. It's no longer about

cheaper quantity but more experienced

quality.

New roles focusing on optimizing AI tools for

development workflows.

With reduced implementation overhead,

developers work more closely with business

stakeholders

Smaller, More

Senior Teams

Embedded

AI Specialists

Stronger

Business-Technology Integration

Refactoring with AI

AI

Is AI a viable option for real-world development tasks
today? Our evidence suggests a definitive yes.

We conducted an experiment with one of our clients that
provides compelling data.

The Background

A 13-year-old legacy application built on a custom PHP
framework with various Laravel workarounds added over
time.

The Task

Extract a standalone module and refactor it to full Laravel
specification while maintaining complete functional parity
without regressions.

The Contenders

We established a comparative trial between our AI Hub
team using our KYLN(ai) framework and one of the client's
experienced developers who regularly worked with this
module.

Size & Scope

The end result encompassed 80 files.

4 805 lines of code created.

Case Study

Human Time
(hours)

AI-Assisted Time
(hours)

65 15.5
Rewriting of first adapter
(including database models generation) $ 17

8* 5.5Rewriting of next adapter $ 13

4 4Code review -

Saved time can be redirected to QA & tests

2.75 4Implementing code review $ 6

80* 29Total $ 36

AI Usage Costs
(Estimated $)

* This task was not completed within the agreed timeframe, therefore it is an estimation.

AI-Assisted development was
 more efficient at refactoring63.25%

Human Developer

AI-Assisted Developer

Many decision makers will accept the
and hop on the AI bandwagon. However, there are several key
observations from our experiment that deserve attention

 Code Quality: Though the AI-written code was working as
expected, we found the human's code more clean and better
aligned with Laravel standards. 

 Significant Onboarding Time: The team had to spend
considerable time meandering through the complex
codebase and preparing instructions for the AI.

 Variable results: Our experiment shows that refactoring the
next adapter was significantly faster, but that might not be
the case with every module. Each section can bring its own
unique obstacles that may challenge AI systems differently

 AI Costs: It's important to factor in the cost of AI usage. In
our case, one developer added an additional $36 for
ultimately a single task. If we assume a monthly cost of
approximately $200 per developer, these expenses can add
up significantly for larger teams.

63% boost at face value

Our AI code on the other hand passed all tests, was fully
documented and lacked technical debt

Caveats

AI

The productivity gains from AI-driven development present
organizations with a strategic choice. Rather than simply
accelerating feature delivery, forward-thinking companies can
redirect these efficiency dividends toward quality
enhancement.

Adopting a quality-over-quantity mindset, allows development
teams to perfect existing functionality rather than perpetually
chasing feature expansion. This approach yields products with
greater stability, usability, and market fit.

The time saved through AI assistance creates opportunities
for more comprehensive testing, user experience refinement,
and data-driven optimization or expanded A/B testing.

Saved time doesn’t
mean more features.

The most immediate business impact of AI-assisted development is dramatically improved
productivity. Our field research reports an estimated

 30-50% reduction in development time for standard feature

 40-60% decrease in time spent on routine coding task

 25-35% faster bug resolution and quality assurance cycles

These efficiency gains translate directly to competitive advantage through faster time-to-market.
When development teams can deliver working software faster, businesses can respond more
quickly to market opportunities, customer feedback, and competitive threats.

While these productivity gains represent real possibilities, it's crucial to understand that
measurements in software development are inherently challenging—just as project estimations
have always been difficult.

Not every task benefits equally from AI assistance, and results vary significantly based on
codebase complexity, domain specificity, and technical constraints.

Some tasks may see only modest improvements or cases where AI isn't beneficial at all!

This inconsistency highlights the continued importance of experienced developers who can
strategically determine where AI will truly accelerate delivery.

Business Value and Transformation

AI

Not every

task benefits

equally from AI

In some cases AI

is an obstacle

Traditionally, A/B testing required significant resource
investment — creating multiple implementation versions

meant doubling development effort while ultimately discarding
half the work.

It is now economically viable to generate multiple
implementation approaches within hours rather than days.

This capability allows for testing beyond simple A/B
comparisons to A/B/C/D testing or even more variants, each
exploring different user experiences, architectural approaches,
or feature implementations.

By evaluating more alternatives before full implementation,
teams can make data-driven decisions that improve user
retention and satisfaction.

A/B testing becomes
economically viable

AI

The realistic cost of AI

Contrary to expectations, AI-assisted development doesn't
necessarily reduce overall development costs. In fact, software
development costs may increase in the short to medium term

 New Subscription Models: Development environments and tools
increasingly shift to subscription-based pricing when they
incorporate AI capabilitie

 API Access Costs: AI-powered coding features rely on API calls
to large language models, each with associated usage fee

 Skill Premium: Developers who effectively leverage AI often
command higher salaries as they produce more valu

 Infrastructure Requirements: building your own AI products face
additional infrastructure costs for model hosting and inference  

While some routine tasks become faster, these savings can be offset
by the new costs introduced. The actual economics will improve as
adoption grows and competition increases.

Another emerging trend is the creation of temporary apps or
custom software for personal use by “weekend coders”.

AI coding makes it economically viable to build specialized tools
for individual needs rather than relying on generic solutions,
which might not even exist.

Imagine you have a specific task that you do repetitively, there
is no existing tool that handles your exact use case. Write it
yourself with an AI Agent or using the many AI Automation
workflows software that exists.

Consider these practical examples

 Creating a custom filter that triggers specific actions when
emails from certain people arriv

 Building a specialized calculator for complex, conditional
calculations without resorting to complex spreadsheet

 Developing simple educational games for children, or
teaching them to build their own games using AI

The Rise of

Personal Software

AI

The concept of "disposable software" becomes practical -
applications built for limited use that solve a specific need and can
then be discarded.

Users can "spend an hour prompting with an Agentic AI, build and
test the product. Once it does what you need, you can remove it."

Non-specialists can now create useful software while technical
experts leverage the same AI tools to build more sophisticated
solutions. By lowering the technical barrier to entry, AI will
dramatically expand the population of people who engage with
programming.

Many who would have dismissed coding as 'too complex' or 'not for
me' will discover they can create meaningful software, leading to
both increased IT literacy across society and a new wave of
programmers from previously untapped talent pools.

This broader participation
. Rather, it will expand the

total universe of what gets programmed.

More people creating software means more innovations, more
industries becoming programmable, and entirely new technological
frontiers being explored. The pie grows substantially larger rather
than being divided into smaller pieces.

The transition from Assembly to C offers a perfect historical
parallel to this. When C emerged as a more accessible alternative
to Assembly, it didn't create an oversupply of programmers.
Instead, it dramatically expanded what could be programmed and
who could program it. This abstraction unlocked new applications,
new industries, and entirely new computing paradigms.

won't lead to an oversaturation of
programming jobs or wage depression

More programmers = less jobs?

AI

C AIJavascript

Frameworks

Assembly

1940’s 1970’s 2010’s

A M O U N T O F C O D E

i n t h e w o r l d

In the diagram, replace “C” with “Photography”, and then
“frameworks” with “The iPhone”. Suddenly, millions gained access

to high-quality cameras for everyday use. This availability created
entirely new professions—social media influencers, content creators,
and citizen journalists.

Yet for important events like weddings, most people still hire
professional photographers, despite every guest having

a smartphone capable of recording the entire celebration.

Companies seeking to harness these benefits need a clear
strategy

 Invest in Expertise: The most successful implementations
pair AI with experienced developers who understand core
concepts and can effectively direct AI systems

 Transform Gradually: But swiftly. Begin with targeted
applications where AI can deliver immediate value, then
expand as teams gain familiarity and confidence

 Reimagine Processes: Adapt workflows to emphasize
problem definition, quality assessment, and integration
rather than line-by-line coding

 Address Cultural Concerns: Proactively engage with
developer concerns about changing roles and skills,
emphasizing how AI augments rather than replaces human
creativity

 Enhance Quality Assurance: Implement rigorous verification
systems to ensure AI-generated code meets production
standards for security, performance, and reliability.

The path forward

AI

The gap between organizations effectively leveraging AI in
development and those resisting the transition is widening daily.

Early adopters are already gaining significant competitive
advantages through faster delivery, more iteration and refining
solutions by easily exploring alternatives. It has become economically
viable to experiment with multiple MVP’s and POC’s, finding the right
path for the companies future.

The question facing technology leaders is

 while managing the associated cultural and
technical challenges. Those who navigate this transition successfully
will position themselves at the forefront of the next generation of
software innovation and business value creation.

no longer whether to
adopt AI-driven development, but how quickly and effectively they
can implement it

AI is here to stay, and has created ripples in the foundations of software development.

Focus should shift towards

 Embracing AI adoption and adaptation especially across development team

 Developing AI orchestration skills to reduce manual work to increase productivit

 Implementing proper quality controls and prevent shortcuts that lead to technical deb

 Addressing workforce concerns through transparent communication and training initiative

 Recognizing that we are in the early phases of AI transformation with further evolution ahea

 Leveraging AI not only for new development but also for modernizing legacy system

 Utilizing productivity gains to perfect value rather than simply increasing outpu

 Implementing regular training program

 Preparing for resistance from both employees and client

 Prioritizing knowledge and expertise over volume of outpu

 Focusing on core fundamentals rather than language-specific detail

 Budgeting appropriately for new AI costs through subscriptions and usage fees

Whitepaper recap

AI

06

08

13

12

17

07

09

14

06

13

17

We stand at a historic inflection point in software development. The AI programming revolution
isn't merely another tooling upgrade—it represents a fundamental reimagining of how software is
created. Just as the transition from Assembly to high-level languages transformed programming
decades ago, AI is now transforming the developer experience and business outcomes in equally
profound ways.

Conclusions

AI

The promise of AI-assisted development is twofold:

First, it offers unprecedented productivity gains in routine coding tasks, the
efficiency improvements are too substantial to ignore. These aren't marginal
gains but transformative changes that allow businesses to deliver more value.

Second, it enables a higher level of human creativity. By freeing developers
from the mechanical aspects of coding, AI allows them to focus on the truly
human elements of software creation: understanding user needs, designing
elegant architectures, and solving novel problems. Rather than diminishing the
developer's role, AI elevates it.

Don’t feel overwhelmed by the rapid pace od AI advancement. Invest in your
companies future, get in touch, discover our exploratory consultations,
knowledge sharing workshops or simply begin your AI build with us.

www.amsterdamstandard.com/ai

The Dual Promise

The time to act, is now

https://www.amsterdamstandard.com/ai

Most of the content in this document is developer accounts and our own observations,
research and field experience. Amsterdam Standards AI Hub, is an internal R&D unit designed
to investigate, examine and utilize AI. Other sources include:

https://fortune.com/2025/03/26/silicon-valley-ceo-says-vibe-coding-lets-10-engineers-do-the-work-of-100-heres-how-to-
use-it/
 

https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality/

https://artsmart.ai/blog/ai-in-productivity-statistics/

https://www.statista.com/statistics/1440348/ai-benefits-in-development-workflow-globally/

https://simonwillison.net/2025/Mar/19/vibe-coding/

https://hypersense-software.com/blog/2025/01/29/key-statistics-driving-ai-adoption-in-2024/

https://en.wikipedia.org/wiki/Vibe_coding

https://en.wikipedia.org/wiki/Generation_effect

https://www.gitclear.com/ai_assistant_code_quality_2025_research

https://www.youtube.com/watch?v=2b_KlROMfp8&ab_channel=Syntax

https://www.linkedin.com/pulse/ai-assisted-development-andrej-karpathys-vibe-coding-future-moreno-su6cc/

https://arc.dev/talent-blog/impact-of-ai-on-code/

https://arxiv.org/pdf/2502.13199

https://jmsnew.iobmresearch.com/index.php/pjets/article/view/1210/719

100% of this document content was created by a human.

Perplexity AI and Claude AI was used to edit and refine the text.

100% of imagery was generated in Midjourney AI.

Sources

AI

Main Contributors

Mikołaj (Miki) Sitek

AI Ambassador

Klaudia Lemiec

AI & ML Tech Lead

Piotr Piechura

AI Hub R&D

Tomasz Rżany

Chief AI Officer

https://fortune.com/2025/03/26/silicon-valley-ceo-says-vibe-coding-lets-10-engineers-do-the-work-of-100-heres-how-to-use-it/
https://fortune.com/2025/03/26/silicon-valley-ceo-says-vibe-coding-lets-10-engineers-do-the-work-of-100-heres-how-to-use-it/
https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality/
https://artsmart.ai/blog/ai-in-productivity-statistics/
https://www.statista.com/statistics/1440348/ai-benefits-in-development-workflow-globally/
https://simonwillison.net/2025/Mar/19/vibe-coding/
https://hypersense-software.com/blog/2025/01/29/key-statistics-driving-ai-adoption-in-2024/
https://en.wikipedia.org/wiki/Vibe_coding
https://en.wikipedia.org/wiki/Generation_effect
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://www.youtube.com/watch?v=2b_KlROMfp8&ab_channel=Syntax
https://www.linkedin.com/pulse/ai-assisted-development-andrej-karpathys-vibe-coding-future-moreno-su6cc/
https://arc.dev/talent-blog/impact-of-ai-on-code/
https://arxiv.org/pdf/2502.13199
https://jmsnew.iobmresearch.com/index.php/pjets/article/view/1210/719

